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Abstract 
In the paper hereby, steady flow around a thin-walled wing is analysed by means of the 

Lifting Surface Method. In order to carry out tests, the wing has been divided into a finite number of 

quadrilateral panels. All panel edges in turn are replaced by discrete straight vortex segments which 

induce velocities within the flow field. The problem boils down to working out velocity circulation 

distribution on the wing surface. For this purpose, numerical realization has been developed in C by 

Minimalist GNU for Windows compiler and Code::Blocks IDE. To work out a solution to the linear 

non-homogeneous algebraic system, the Gauss – Seidel stationary iterative method has been applied. 

The obtained results for various angle of attack values are depicted by means of ParaView. 

 

 
 Introduction 
 

The proposed study aims at displaying a fast algorithm for three-

dimensional smooth flow analysis. A straight slender wing with finite span has 

been chosen for the test purposes. It has an exact resemblance to HAWK-2M 

Unmanned aerial Vehicle (UAV) wing upper surface. The UAV is produced by 

Aviotehnika Ltd. in Bulgaria. Although, the utilized algorithm is relatively old (it is 

also widely known as the Lifting Surface Method), it is seldom used in conjunction 

with iterative schemes for working out a solution to the linear algebraic system. In 

addition, the lack of specific aerodynamic data motivates the proposed study, so 

does development of a nonproprietary source code. 

 
 Method 
 

The utilized approach towards working out a numerical solution follows 

procedure thoroughly described in [1]. The wing is divided into finite number of 

quadrilateral panels. Each panel is replaced afterwards by a vortex ring consisting 

of four straight vortex segments with constant intensity Γ. The rings purpose is to 

replace the actual geometry by inducing velocities within the flow field. In this 
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way, discontinuities of the velocity field magnitude are introduced which is what 

the actual wing is designed for. Each panel centroid is considered a collocation 

point. The velocities induced by all panels are computed successively at each 

collocation point and a linear algebraic system is formed afterwards in terms of 

velocity circulation distribution on the wing surface. A solution to the system is 

worked out numerically employing the Gauss – Seidel’s stationary iterative 

scheme. Validation of the implemented algorithm has also been carried out. 

 
The Biot – Savart law applied to a straight vortex element 

 

The velocity induced at point P, fig. 1, by a straight vortex element with 

finite length r0 might be computed by means of following formula, [1]: 
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Fig. 1. Velocity induced by straight vortex element 

 
Formula (1) is an alternative expression of the Biot-Savart law, which establishes a 

relationship between the induced velocity and the vortex element geometry. This 

formula is mainly used about further computations, which are to be made in the 

paper. It should also be noted that the velocity vector q12, Fig. 1, is orthogonal to 

the plane formed by vectors r1 and r2 which statement intuitively follows taking 

into account the cross product in (1). 

 
Computation of influence coefficients 

 

The boundary condition imposed on the problem under consideration 

implies that normal flow component is not allowed through the wing surface. The 
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normal velocity component at each point of the wing could be divided into a self-

induced and a free-stream part, [1], i.e. 

(2)   0  nQu . 

The self-induced part is a linear combination of the so-called influence coefficients, 

which must be computed at each collocation point. These coefficients are defined 

as velocity components normal to the surface due to singularity element (vortex 

ring in our case) with unit strength, [1]. What is more, the velocity components 

induced by a single vortex ring at given collocation point are defined as an 

algebraic sum of velocities induced by all straight vortex segments comprising the 

ring. For instance, the influence coefficient at collocation point 1 due to vortex  

ring j is defined as dot product (3) between induced velocity u and panel normal 

vector n, 

(3) 111 nu jja  . 

At given collocation point, velocities induced by all vortex rings that the wing 

contains must be added to each other. At that point, the left hand side of (2) is 

represented by the sum (4), 
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In formula (4) circulation value Γj is unknown. In addition, the induced velocity 

computed by means of (1) takes value of Γ = 1. 

Having traced all vortex rings influence upon all collocation points, 

following linear non-homogenous algebraic system with constant coefficients is 

formed: 
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In system (5), the right-hand side (RHS) is computed at current collocation point as 

(6) iiRHS nQ . 
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The approach described above is illustrated in Fig. 2 adopting double indexing 

notation. 

 

 
 

Fig. 2. Velocity induced at collocation point P47 due to panel i = 2, j = 1 

 
In order to put the system (5) together, normal unit vectors at each panel 

must be computed in advance. This could be easily done recalling that the panel 

area equals half the cross product 

(7)  qpS  5.0ij . 

The vectors p and q form diagonals of the quadrilateral panel, Fig. 2, upper left 

corner. Hence, the unit vector is 

(8) 
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Solving a linear algebraic system 
 

Having computed the influence coefficients, a non-homogenous linear 

algebraic system (5) is obtained in terms of circulation Γ distribution on the wing 

surface. The system is said to be strictly diagonal dominant if the absolute value of 

each main diagonal element is greater than sum of the absolute values of remaining 

entries in the current row respectively, i.e. 
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If the requirement (9) is met, then the following stationary iterative method, [2] 
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for working out a solution to the system (5) is said to converge unconditionally. 

Method (10) is named after Gauss and Seidel who used it as a modification of the 

widely known Jacobi method, [3]. 
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The convergence criterion used in the algorithm is the relative difference 

(12) 
1 3max 10k k k  x x x  

Both iterative schemes (10) and (11) require initial guess for the vector x. 

 
Secondary quantities 

 

After computing the velocity circulation distribution, it becomes possible 

to work out lift L, pressure distribution p, and drag due to lift D values. Following 

formulae are recommended, [1]: 

 Lift on each bound vortex segment: 

(13) 
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 Static pressure distribution: 

(14) ij ij ijp L S     

 Induced drag due to trailing vortex segments of each panel: 
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where w is the induced velocity on the wing surface. Eventually, for total values it 

yields: 

 Total drag: 
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 Total lift: 
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Since the fluid is assumed ideal, any other kind of drag force is expected to be zero 

due to d’Alembert paradox. 

 
Source code description and validation 

 

The source code has been developed in C. It utilizes two main structures 

shown in Fig. 3. Firstly, a structure storing quantities due to one straight vortex 

segment is created. In addition to geometry and velocity data, it contains a pointer 

to a function working out the induced velocities q12 according to formula (1). Then, 

another structure is created to store quantities related to one vortex ring. Since one 

ring contains four segments, four pointers to the former structure are declared 

within the latter. In this way, an inheritance is implemented facilitating code 

development process and making it possible to clarify vortex segments pertaining 

to the current ring and their location on the mesh. According to author’s 

experience, double indexing of the panels in both curvilinear directions is the best 

approach as it is shown in Fig. 2. 

The source code reads a text file containing grid point coordinates. Having 

read the data, the code passes them to aforementioned structures for further 

processing. All data blocks such as structures and arrays are dynamically allocated 

and assigned to pointers thereafter, which lets developer make use of the program 

with arbitrary number of panels. Both the number of wake panels and their 

geometry are computed automatically. Having completed the calculations, all data 

blocks are set free. 
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The source code has been developed by means of Minimalist GNU for 

Windows v.4.9.2, [4] and Code::Blocks IDE v.17.12, [5]. The 3rd party software 

used is ParaView to visualize obtained data, [6]. 

 
#ifndef DEFS_H 

#define DEFS_H 

#define PI_180 4. * atan(1.) / 180. 

#define I 10 

#define J 32 

#define AOA 10 //deg 

#define IW 2   // wake points along I 

 

typedef double real; 

typedef int int_t; 

 

typedef struct oneSegment { 

        struct oneSegment *that; 

        real u, v, w, x1, y1, z1, x2, y2, z2; 

        int_t (*q12)(struct oneSegment*, real, real, real, real); 

} mySegment; 

 

typedef struct onePanel { 

        struct onePanel *that; 

        real S, nx, ny, nz; 

        mySegment *East, *West, *North, *South; 

} myPanel; 

 

real **x, **y, **z, **xP, **yP, **zP, **xW, **yW, **zW, *A, *b, **Gamma; 

myPanel ***panel, ***panelW; 

 

real** make2DArray(int_t X, int_t Y); 

int_t delete2DArray(real **foo, int_t X); 

int_t q12Common(mySegment *foo, real xP, real yP, real zP, real G); 

myPanel* makePanel(int_t i, int_t j, real **x, real **y, real **z); 

int_t killPanel(myPanel *foo); 

int_t LHS(real *pA, real **G, int_t knob); 

int_t RHS(real *pb); 

int_t solveLS_GS(real *a, real *b, real **G); 

 

#endif // DEFS_H 

 

Fig. 3. Main header file used in the developed software 

 
In order to estimate the program ability to work out a solution in advance, a 

few validation cases were carried out. Firstly, the iterative scheme (10) was tested 

with exact solution of small-sized system of linear non-homogenous equations, 

precisely 3 and 4. The Gauss-Seidel method proved to be about three times faster 

than Jacobi’s, as expected. 

The proposed algorithm is tested further by means of a thin rectangular 

wing divided into a mesh of 4 times 26 panels. This problem has been solved in [1] 

by means of a FORTRAN code published in Appendix D.2. Unlike the presented 

study, Gauss eliminations were used in [1] to solve the linear system of equations. 



95 

 

Both results for circulation Γ distribution on the wing surface are shown in Fig. 4 

and Table 1. 

 
 Numerical results 
 

In Table 1 and Fig. 4, results from presented code validation are shown. In 

Fig. 4, the wing semi span is solely depicted due to symmetry. 

 
Table 1. Exemplary serial computations 
 

 Gamma, m2/s, Katz and Plotkin, [1] Gamma, m2/s, presented code 

R/C 1 2 3 4 1 2 3 4 

1 0.491 0.699 0.822 0.889 0.491 0.698 0.822 0.889 

2 0.490 0.697 0.820 0.887 0.490 0.697 0.819 0.887 

3 0.487 0.693 0.815 0.882 0.488 0.693 0.815 0.882 

4 0.484 0.688 0.808 0.875 0.484 0.688 0.808 0.874 

5 0.479 0.680 0.799 0.864 0.479 0.680 0.799 0.864 

6 0.472 0.670 0.786 0.850 0.472 0.670 0.786 0.850 

7 0.463 0.656 0.769 0.830 0.463 0.656 0.769 0.830 

8 0.451 0.637 0.746 0.805 0.451 0.637 0.746 0.805 

9 0.435 0.613 0.715 0.771 0.435 0.613 0.715 0.770 

10 0.413 0.579 0.674 0.724 0.413 0.579 0.674 0.724 

11 0.383 0.532 0.615 0.659 0.383 0.532 0.615 0.658 

12 0.337 0.460 0.526 0.561 0.337 0.460 0.526 0.561 

13 0.255 0.336 0.378 0.400 0.255 0.336 0.378 0.400 

 

 
 

Fig. 4. Program validation, α = 5 deg, Q∞ = 1 m/s 

 
In Fig. 5, numerical results are shown for lift force distribution along upper 

surface of the Hawk-2M wing. In this case, the Gauss-Seidel numerical routine 

(10) has been used to work out a solution to system (5). In case of angle of attack  

α = 10 deg, Q∞ = 16.7 m/s, ρ = 1.225 kg/m3, the total lift is L = 147 N. In addition, 

the total lift coefficient is CL = 1.358. In Fig. 6, a screenshot taken during 

numerical computations is depicted regarding same computational case. In the 

figure, upper left corner of the coefficient matrix taking part in system (5) is clearly 

visible. It is evident that the main diagonal elements are dominant with respect to 
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the order of magnitude. In Fig. 7, the root wing foil of Hawk-2M UAV is depicted. 

The wingfoil upper surface has been extruded along the semi span so as to obtain 

the 3D slender wing used in the present study. 

 

 

Fig. 5. Lift force distribution, N 

 

 

Fig. 6. Matrix A upper left corner 
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Fig. 7. NACA 63-415, 15% 

  
4. Discussion 

 

It is somewhat appropriate to note that velocities induced at given 

collocation point by an arbitrary vortex ring are highly dependent of the distances 

r1 and r2, Fig. 1, dashed lines, Fig. 2. The longer the distance the least the 

influence. Therefore, the biggest velocities are induced by a ring, which overlaps 

the collocation point. This in turn implies that the user is expected to get a 

diagonally dominant system of linear equations because diagonal elements with 

same indices all in (5) are obtained whenever the collocation point and vortex ring 

coincide. 

In Fig. 2, a set of vortex rings (wake) is depicted right behind the wing 

trailing edge. Essentially, this implements the Kutta condition implying that the 

rear stagnation point should be held at the trailing edge. At that point, the flow 

velocity takes zero value. The vortex straight segments in Fig. 2 along the trailing 

edge replace the initial vortex. They would remain uncompensated if the vortex 

wake were absent. It is well known fact that the velocity vector circulation makes 

up for the initial vortex to preserve angular momentum of the mechanical system. 

Having encountered the trailing edge panels, the algorithm appends wake rings 

influences in order to impose the Kutta condition. For all that, the wake is a major 

source of numerical errors, which is why it is recommended for its length to be no 

less than 20 chords, [1]. 

In Table 1, Fig. 4, slight differences might be observed between results. 

The explanation might be found the digit precision. In book [1], single precision 

variables were used whilst in presented study results are quoted using double digit 

precision. In Fig. 5, the numerical results are shown for angle of attack α = 10 deg. 

It may be figured out that the lift force decreases dramatically in the vicinity of 

ailerons thus reducing their efficiency. This is notably the case of take-off and 

landing. Efficiency of Hawk-2M aileron has been already thoroughly discussed in 

paper [7]. 

According to Fig. 6, the coefficient matrix is expected to be noninvertible. 

The matrix determinant has been computed in addition by means of GNU 

Scientific Library, [8], “gsl_linalg_LU_det” routine. The obtained order of result 

was quite small which makes the iterative scheme preferable to some direct 

methods such as the Cramer’s rule. 
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A possible algorithm extension would be simulating an unsteady flow 

around the wing. In this case, the wake shape evolution should be computed in 

addition. Also, it is advisable to study the topic of winglets design for this 

particular wing. Unfortunately, it is not possible to dive into all details of the 

source code due to the limited paper size. However, the source code is extensively 

commented and distributed by the author on demand. 

Some additional tests carried out by means of Jacobi’s and Gauss-Seidel’s 

methods might be found in [9]. 
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АНАЛИЗ НА СТАЦИОНАРНО ТЕЧЕНИЕ ОКОЛО ТЪНКО КРИЛО  

ПО МЕТОДА НА НОСЕЩАТА ПОВЪРХНОСТ 

 
К. Методиев 

 
Резюме 

В настоящата статия стационарно течение около тънко крило е 

анализирано по Метода на носещата повърхност. За да се проведат числени 

експерименти, крилото бе разделено на краен брой квадратични панели. 

Всички страни на панелите на свой ред са заменени от дискретни прави вих-

рови сегменти, които индуцират скорости в полето на течението. Задачата се 

свежда до намиране на разпределението на циркулацията по повърхността на 

крилото. За целта бе разработена числена реализация на език С посредством 

компилатор Minimalist GNU for Windows и развойна среда Code::Blocks. За да 

се намери решение на линейната нехомогенна алгебрична система бе при-

ложен итеративен метод на Гаус – Зайдел. Получените резултати за различни 

ъгли на атака са визуализирани посредством ParaView. 

http://www.mingw.org/
http://www.codeblocks.org/
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