Bulgarian Academy of Sciences. Space Research and Technology Institute.
Aerospace Research in Bulgaria. 32, 2020, Sofia

DOI: https://doi.org/10.3897/arb.v32.e08

STEADY FLOW ANALYSIS OF A SLENDER WING BY LIFTING
SURFACE METHOD

Konstantin Metodiev

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: komet@space.bas.bg

Key words: Panel Method, Lifting Surface, Iterative Scheme

Abstract

In the paper hereby, steady flow around a thin-walled wing is analysed by means of the
Lifting Surface Method. In order to carry out tests, the wing has been divided into a finite number of
quadrilateral panels. All panel edges in turn are replaced by discrete straight vortex segments which
induce velocities within the flow field. The problem boils down to working out velocity circulation
distribution on the wing surface. For this purpose, numerical realization has been developed in C by
Minimalist GNU for Windows compiler and Code::Blocks IDE. To work out a solution to the linear
non-homogeneous algebraic system, the Gauss — Seidel stationary iterative method has been applied.
The obtained results for various angle of attack values are depicted by means of ParaView.

Introduction

The proposed study aims at displaying a fast algorithm for three-
dimensional smooth flow analysis. A straight slender wing with finite span has
been chosen for the test purposes. It has an exact resemblance to HAWK-2M
Unmanned aerial Vehicle (UAV) wing upper surface. The UAV is produced by
Aviotehnika Ltd. in Bulgaria. Although, the utilized algorithm is relatively old (it is
also widely known as the Lifting Surface Method), it is seldom used in conjunction
with iterative schemes for working out a solution to the linear algebraic system. In
addition, the lack of specific aerodynamic data motivates the proposed study, so
does development of a nonproprietary source code.

Method

The utilized approach towards working out a numerical solution follows
procedure thoroughly described in [1]. The wing is divided into finite number of
quadrilateral panels. Each panel is replaced afterwards by a vortex ring consisting
of four straight vortex segments with constant intensity 7". The rings purpose is to
replace the actual geometry by inducing velocities within the flow field. In this

88


https://doi.org/10.3897/arb.v32.e08
mailto:komet@space.bas.bg

way, discontinuities of the velocity field magnitude are introduced which is what
the actual wing is designed for. Each panel centroid is considered a collocation
point. The velocities induced by all panels are computed successively at each
collocation point and a linear algebraic system is formed afterwards in terms of
velocity circulation distribution on the wing surface. A solution to the system is
worked out numerically employing the Gauss — Seidel’s stationary iterative
scheme. Validation of the implemented algorithm has also been carried out.

The Biot — Savart law applied to a straight vortex element

The velocity induced at point P, fig. 1, by a straight vortex element with
finite length ro might be computed by means of following formula, [1]:

I' rxr rh r
(1) ql’2 —_g.ro (_1__2J

Ar |r1 ><r2|2

Fig. 1. Velocity induced by straight vortex element

Formula (1) is an alternative expression of the Biot-Savart law, which establishes a
relationship between the induced velocity and the vortex element geometry. This
formula is mainly used about further computations, which are to be made in the
paper. It should also be noted that the velocity vector gi2, Fig. 1, is orthogonal to
the plane formed by vectors ri and r, which statement intuitively follows taking
into account the cross product in (1).

Computation of influence coefficients

The boundary condition imposed on the problem under consideration
implies that normal flow component is not allowed through the wing surface. The
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normal velocity component at each point of the wing could be divided into a self-
induced and a free-stream part, [1], i.e.

@ (u+Q,)n=0.

The self-induced part is a linear combination of the so-called influence coefficients,
which must be computed at each collocation point. These coefficients are defined
as velocity components normal to the surface due to singularity element (vortex
ring in our case) with unit strength, [1]. What is more, the velocity components
induced by a single vortex ring at given collocation point are defined as an
algebraic sum of velocities induced by all straight vortex segments comprising the
ring. For instance, the influence coefficient at collocation point 1 due to vortex
ring j is defined as dot product (3) between induced velocity u and panel normal
vector n,

(3) a;; =Uy; N,

At given collocation point, velocities induced by all vortex rings that the wing
contains must be added to each other. At that point, the left hand side of (2) is
represented by the sum (4),

N N
(4) Zaijrj :Zuljnlrj :_Qoonl'
j=1 j=1

In formula (4) circulation value 77j is unknown. In addition, the induced velocity
computed by means of (1) takes value of I" = 1.

Having traced all vortex rings influence upon all collocation points,
following linear non-homogenous algebraic system with constant coefficients is
formed:

&; &y ... ay|ll; RHS,
Ay Ay, Ay ... Ayl RHS,
(5) Ay 9y Qg ... gy rs = RHSs .
Ay, Ay, Ayg .- Ayl RHS,,

In system (5), the right-hand side (RHS) is computed at current collocation point as
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The approach described above is illustrated in Fig. 2 adopting double indexing
notation.

f,fr'+f s i+1, f+1 i=1 7

Fig. 2. Velocity induced at collocation point P47 dueto panel i=2,j=1

In order to put the system (5) together, normal unit vectors at each panel
must be computed in advance. This could be easily done recalling that the panel
area equals half the cross product

(7) Si =0.5(pxq).

The vectors p and g form diagonals of the quadrilateral panel, Fig. 2, upper left
corner. Hence, the unit vector is

S,
(8) nij :E
Il

Solving a linear algebraic system

Having computed the influence coefficients, a non-homogenous linear
algebraic system (5) is obtained in terms of circulation 7" distribution on the wing
surface. The system is said to be strictly diagonal dominant if the absolute value of
each main diagonal element is greater than sum of the absolute values of remaining
entries in the current row respectively, i.e.
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If the requirement (9) is met, then the following stationary iterative method, [2]
k_ 1 SR k1| _
10) x‘=—|b->ax-> ax | i=12..n k=123..
a;; = j=i+l

for working out a solution to the system (5) is said to converge unconditionally.
Method (10) is named after Gauss and Seidel who used it as a modification of the
widely known Jacobi method, [3].

(11) xik:i bi—> axi™"| i=12..,n k=123,...
& L

j#i
The convergence criterion used in the algorithm is the relative difference
(12)  max ‘x" — x"’l‘/‘x"‘ <1073
Both iterative schemes (10) and (11) require initial guess for the vector x.

Secondary quantities

After computing the velocity circulation distribution, it becomes possible
to work out lift L, pressure distribution p, and drag due to lift D values. Following
formulae are recommended, [1]:

o Lift on each bound vortex segment:

AI-ij =, (Fij _Fi—lj )Ayij i>1

(13) .
AL; = pQ,T';Ay; =1

e  Static pressure distribution:
(14)  Ap; = AL;/AS,

¢ Induced drag due to trailing vortex segments of each panel:
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AD; =—pw, (T -T ;) Ay, i>1

(15) _
AD; = pw, ", Ay; =1

where w is the induced velocity on the wing surface. Eventually, for total values it
yields:

e Total drag:
M N
(16) D=) > AD,
i=1 j=1
e Total lift:
M N
17)  L=> > AL
i=1 j=1

Since the fluid is assumed ideal, any other kind of drag force is expected to be zero
due to d’ Alembert paradox.

Source code description and validation

The source code has been developed in C. It utilizes two main structures
shown in Fig. 3. Firstly, a structure storing quantities due to one straight vortex
segment is created. In addition to geometry and velocity data, it contains a pointer
to a function working out the induced velocities g1, according to formula (1). Then,
another structure is created to store quantities related to one vortex ring. Since one
ring contains four segments, four pointers to the former structure are declared
within the latter. In this way, an inheritance is implemented facilitating code
development process and making it possible to clarify vortex segments pertaining
to the current ring and their location on the mesh. According to author’s
experience, double indexing of the panels in both curvilinear directions is the best
approach as it is shown in Fig. 2.

The source code reads a text file containing grid point coordinates. Having
read the data, the code passes them to aforementioned structures for further
processing. All data blocks such as structures and arrays are dynamically allocated
and assigned to pointers thereafter, which lets developer make use of the program
with arbitrary number of panels. Both the number of wake panels and their
geometry are computed automatically. Having completed the calculations, all data
blocks are set free.
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The source code has been developed by means of Minimalist GNU for
Windows v.4.9.2, [4] and Code::Blocks IDE v.17.12, [5]. The 3" party software
used is ParaView to visualize obtained data, [6].

#ifndef DEFS H

#define DEFS H

#define PI 180 4. * atan(l.) / 180.
#define I 10

#define J 32

#define AOA 10

#define IW 2

typedef double real;
typedef int int t;

typedef struct oneSegment {

struct oneSegment *that;

real u, v, w, x1, vyl, zl1, x2, y2, z2;

int t (*ql2) (struct oneSegment*, real, real, real, real);
} mySegment;

typedef struct onePanel {

struct onePanel *that;

real S, nx, ny, nz;

mySegment *East, *West, *North, *South;
} myPanel;

real **x, **y, **z, **xp, **yPp, **zP, **xW, **yW, **zW, *A, *b, **Gamma;
myPanel ***panel, ***panelW;

real** make2DArray (int_t X, int t Y);

int t delete2DArray(real **foo, int t X);

int t gl2Common (mySegment *foo, real xP, real yP, real zP, real G);
myPanel* makePanel (int t i, int t j, real **x, real **y, real **z);
int_t killPanel (myPanel *foo);

int t LHS(real *pA, real **G, int t knob);

int t RHS(real *pb);

int_t solvelS GS(real *a, real *b, real **G);

#endif

Fig. 3. Main header file used in the developed software

In order to estimate the program ability to work out a solution in advance, a
few validation cases were carried out. Firstly, the iterative scheme (10) was tested
with exact solution of small-sized system of linear non-homogenous equations,
precisely 3 and 4. The Gauss-Seidel method proved to be about three times faster
than Jacobi’s, as expected.

The proposed algorithm is tested further by means of a thin rectangular
wing divided into a mesh of 4 times 26 panels. This problem has been solved in [1]
by means of a FORTRAN code published in Appendix D.2. Unlike the presented
study, Gauss eliminations were used in [1] to solve the linear system of equations.
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Both results for circulation 7" distribution on the wing surface are shown in Fig. 4
and Table 1.

Numerical results

In Table 1 and Fig. 4, results from presented code validation are shown. In
Fig. 4, the wing semi span is solely depicted due to symmetry.

Table 1. Exemplary serial computations

Gamma, m%s, Katz and Plotkin, [1] | Gamma, m?/s, presented code
R/C 1 2 3 4 1 2 3 4
0.491 0.699 0.822 0.889 0.491 0.698 0.822 0.889
0.490 0.697 0.820 0.887 0.490 0.697 0.819 0.887
0.487 0.693 0.815 0.882 0.488 0.693 0.815 0.882
0.484 0.688 0.808 0.875 0.484 0.688 0.808 0.874
0.479 0.680 0.799 0.864 0.479 0.680 0.799 0.864
0.472 0.670 0.786 0.850 0.472 0.670 0.786 0.850
0.463 0.656 0.769 0.830 0.463 0.656 0.769 0.830
0.451 0.637 0.746 0.805 0.451 0.637 0.746 0.805

9 0.435 0.613 0.715 0.771 0.435 0.613 0.715 0.770
10 0.413 0.579 0.674 0.724 0.413 0.579 0.674 0.724
11 0.383 0.532 0.615 0.659 0.383 0.532 0.615 0.658
12 0.337 0.460 0.526 0.561 0.337 0.460 0.526 0.561
13 0.255 0.336 0.378 0.400 0.255 0.336 0.378 0.400

0N (WIN|F

Gamma distribution, Katz & Plotkin, [1], wing semi span Gamma distribution, presented code, wing semi span
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Fig. 4. Program validation, o. = 5 deg, Q.. = 1 m/s

In Fig. 5, numerical results are shown for lift force distribution along upper
surface of the Hawk-2M wing. In this case, the Gauss-Seidel numerical routine
(10) has been used to work out a solution to system (5). In case of angle of attack
a =10 deg, Q. = 16.7 m/s, p = 1.225 kg/m?, the total lift is L = 147 N. In addition,
the total lift coefficient is C. = 1.358. In Fig. 6, a screenshot taken during
numerical computations is depicted regarding same computational case. In the
figure, upper left corner of the coefficient matrix taking part in system (5) is clearly
visible. It is evident that the main diagonal elements are dominant with respect to

95



the order of magnitude. In Fig. 7, the root wing foil of Hawk-2M UAV is depicted.
The wingfoil upper surface has been extruded along the semi span so as to obtain
the 3D slender wing used in the present study.

Fig. 5. Lift force distribution, N

-1.126e+881 8.969e-0061 8.536e-002 2.545e-602 1.117e-802

5.985e-003
8.650e-081 -1.069e+001 9.490e-001 9.085e-002 2.608e-002 1.179e-002
7.532e-862 T.107e-801 -1.823e+001 9.978e-801 9.618e-802 2.845e-802
2.08%e-062 8.111e-062 G.608e-001 -0.840e+000 1.044e+000 1.013e-001
8.606e-003 2.258e-062 8.669e-0802 1.018e+000 -9.5156+000 1.086e+0800
4.358e-003 9.202e-063 2.413e-002 9.217e-002 1.061e+000 -9.238e+000
2.506e-063 4.706e-003 9.953e-003 2.570e-002 9.740e-002 1.102e+000
1.572e-063 2.706e-063 5.042e-003 1.061e-002 2.721e-002 1.025e-001
1.850e-063 1.608e-003 2.900e-003 5.375e-003 1.124e-002 2.869e-0802
7.362e-064 1.134e-063 1.819e-003 3.092e-003 5.697e-003 1.186e-002
5.350e-0864 7.951e-864 1.216e-003 1.940e-003 3.279¢-003 6.013e-003
4.022e-004 5.789e-064 8.524e-004 1.297e-003 2.058e-003 3.461e-003
3.006e-064 4.3450-604 6.206e-004 9.003e-004 1.375e-003 2.173e-003
2.434e-004 3.345e-064 4.650e-804 6.622e-004 9.647e-004 1.453e-003
1.948e-0864 2.630e-004 3.588e-004 4.972e-604 7.026e-004 1.019¢-003
1.510e-064 2.001e-064 2.671e-004 3.608e-004 4.,045¢-604 6.912e-004
1.145e-864 1.489¢-064 1.945¢-804 2.564e-004 3.415¢-0804 4.614e-004
9.,251e-085 1.187e-064 1.528e-004 1.981e-004 2.587e-004 3.418e-004
7.982e-065 1.005e-0864 1.280e-004 1.640e-0804 2.114e-004 2.751e-004
6.800e-085 8.576e-085 1.083e-004 1.372e-004 1.749e-004 2.244e-004
5.801e-065 7.374e-005 9.231e-805 1.150e-804 1.462e-004 1.854e-004
5.135e-085 6.3B4e-085 7.932e-005 9.879e-005 1.234e-004 1.548e-004
4.503e-005 5.563e-065 6.864e-005 8.484e-005 1.851e-804 1.306e-004

Fig. 6. Matrix A upper left corner
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Fig. 7. NACA 63-415, 15%

4. Discussion

It is somewhat appropriate to note that velocities induced at given
collocation point by an arbitrary vortex ring are highly dependent of the distances
ri and rp, Fig. 1, dashed lines, Fig. 2. The longer the distance the least the
influence. Therefore, the biggest velocities are induced by a ring, which overlaps
the collocation point. This in turn implies that the user is expected to get a
diagonally dominant system of linear equations because diagonal elements with
same indices all in (5) are obtained whenever the collocation point and vortex ring
coincide.

In Fig. 2, a set of vortex rings (wake) is depicted right behind the wing
trailing edge. Essentially, this implements the Kutta condition implying that the
rear stagnation point should be held at the trailing edge. At that point, the flow
velocity takes zero value. The vortex straight segments in Fig. 2 along the trailing
edge replace the initial vortex. They would remain uncompensated if the vortex
wake were absent. It is well known fact that the velocity vector circulation makes
up for the initial vortex to preserve angular momentum of the mechanical system.
Having encountered the trailing edge panels, the algorithm appends wake rings
influences in order to impose the Kutta condition. For all that, the wake is a major
source of numerical errors, which is why it is recommended for its length to be no
less than 20 chords, [1].

In Table 1, Fig. 4, slight differences might be observed between results.
The explanation might be found the digit precision. In book [1], single precision
variables were used whilst in presented study results are quoted using double digit
precision. In Fig. 5, the numerical results are shown for angle of attack o = 10 deg.
It may be figured out that the lift force decreases dramatically in the vicinity of
ailerons thus reducing their efficiency. This is notably the case of take-off and
landing. Efficiency of Hawk-2M aileron has been already thoroughly discussed in
paper [7].

According to Fig. 6, the coefficient matrix is expected to be noninvertible.
The matrix determinant has been computed in addition by means of GNU
Scientific Library, [8], “gsl linalg LU det” routine. The obtained order of result
was quite small which makes the iterative scheme preferable to some direct
methods such as the Cramer’s rule.
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A possible algorithm extension would be simulating an unsteady flow
around the wing. In this case, the wake shape evolution should be computed in
addition. Also, it is advisable to study the topic of winglets design for this
particular wing. Unfortunately, it is not possible to dive into all details of the
source code due to the limited paper size. However, the source code is extensively
commented and distributed by the author on demand.

Some additional tests carried out by means of Jacobi’s and Gauss-Seidel’s
methods might be found in [9].
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AHAJIN3 HA CTAIIMOHAPHO TEYEHHUE OKOJIO TBHKO KPNJIO
IO METOJA HA HOCEIIATA ITOBBPXHOCT

K. Memooues

Pesrome

B HacTosmara craTHs CTalMOHAPHO TEUYEHHE OKOJO THHKO KPHJIO €
aHanM3upaHo 1Mo Meroja Ha HocelaTa MOBBPXHOCT. 3a Ja Ce MPOBEAAT YHCICHH
eKCIIEPUMEHTH, KPHWJIOTO O€ pas[esieH0 Ha KpaeH Opod KBaapaTHYHHU MaHEIH.
Benuku cTpaHn Ha maHeIMTE HA CBOW pell ca 3aMEHEHM OT JTUCKPETHH MPaBH BHUX-
POBHU CErMEHTH, KOUTO UHIYLUPAT CKOPOCTH B MOJETO HAa TEUEHUETO. 3ajayara ce
CBEXJIa JI0 HAMUpAHE Ha pa3lpe/ielIeHNeTo Ha IUPKYJIANATA 10 IOBbPXHOCTTA Ha
KpuiioTo. 3a uenra Oe pa3paboTeHa yucieHa peanu3anusa Ha e3uk C mocpeacTBoM
komnuiatop Minimalist GNU for Windows u pa3Boiina cpena Code::Blocks. 3a na
ce HaMepH pellieHHe Ha JIMHEeWHaTa HEXOMOTeHHa alreOpuvHa cuctema Oe TpH-
JI0’KeH uTepaTuBeH Metoa Ha ['ayc — 3aiiaen. [lonydyennrte pe3ynTaTu 3a pa3iundHA
BIJIM HA aTaka ca BU3yaln3UpaHu nocpenctsoM ParaView.
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